在齿轮级,发动机的转速可通过两套齿轮传送到输出杆上。主减速器由行星齿轮完成,副减速器由蜗轮实现,它被一套绷紧的弹簧固定在中心位置。在发生过载的情况下,也就是输出杆**过了弹簧的设定转矩时,蜗轮会发生轴向位移,对开关及信号装置进行微调,为系统提供保护。 受由外部变化控制杆操纵的耦合的作用,输出杆在发动机工作时与蜗轮耦合,在手动操作时与手轮耦合。当发动机不工作时,可以很容易地断掉电机驱动,并且只需压一下控制杆即可连上手轮。由于电机驱动**于手动操作,因此当发动机再次启动时,会自动发生反向动作。这样就可以避免当发动机运转时还开启手轮,有利于保护系统。
弹簧复位选用示例
弹簧复位执行机构的选用示例:
弹簧关(失气)
*球阀的力矩=80NM
*安全系数(25%)=80NM+25%=100NM
*气源压力=0.6MPa
被选用的SY-SR执行机构是SR125-05,因为可产生下列数值:
*弹簧行程0o=119.2NM
*弹簧行程90o=216.2NM
*空气行程0o=228.7NM
*空气行程90o=118.8NM。
执行器是自动控制系统中必不可少的一个重要组成部分。它的作用是接受控制器送来的控制信号,改变被控介质的大小,从而将被控变量维持在所要求的数值上或一定的范围内。执行器按其能源形式可分为气动、液动、电动三大类。气动执行器用压缩空气作为能源,其特点是结构简单、动作可靠、平稳、输出推力较大、维修方便、防火防爆,而且价格较低,因此广泛地应用于化工、造纸、炼油等生产过程中,它可以方便地与被动仪表配套使用。即使是使用电动仪表或计算机控制时,只要经过电-气转换器或电-气阀门定位器将电信号转换为20-100kPa的标准气压信号,仍然可用气动执行器。
弹簧复位执行机构的输出力矩由力(空气压力或弹簧作用力)乘上力臂所得种状况:输出力矩是由空气压力进入中腔压缩弹簧后所得,称为"空气行程输出力矩"在这种情况下,气源压力迫使活塞从0度转向90度位置,由于弹簧压缩产生反作用力。